Sequentializing Compiler-Based Graph
Representations of Code for Machine Learning

Group 28 - Wenfei Tang, Fangyuan Yang, Cooper Stevens, and Samin Riasat

Abstract—In recent years, much research has been done into
analyzing source code to determine compiler optimizations to
improve runtime on a given hardware. Tasks for compiler
optimizations for kernels include CPU/GPU mapping and thread
coarsening. [2] Given the resemblance of source code to natural
language, a common approach for learning a decision maker
for these optimizations given source code includes natural lan-
guage processing approaches like LSTM-based models. Given
the popularity and depth of research into such approaches,
these have proven to be quite successful, as many methods and
improvements have been proposed for such models.

However, one can notice distinct differences between natural
language and source code (for example, a line of code occurring
after another does not necessarily guarantee the same temporal
relationship in execution, unlike natural language). As such,
researchers have more recently began looking into other forms
of representation for source code that may be more conducive
to learning a decision maker. In particular, many compiler-based
graph representations have been shown to have some merit in
recent studies. [2], [4] In this exploration, we look to see if we
can improve overall performance by combining the benefit of the
compiler-based graph representations (that encode application-
specific knowledge) with the benefit of the well-researched, high-
performance LSTM-based models by sequentializing the graph
representations.

I. INTRODUCTION

In recent years, much research has been done into analyzing
source code to determine compiler optimizations to improve
runtime on a given hardware. Tasks for compiler optimizations
for kernels include CPU/GPU mapping and thread coarsening.
[2]] Given the resemblance of source code to natural language,
a common approach for learning a decision maker for these
optimizations given source code includes natural language
processing approaches like LSTM-based models. Given the
popularity and depth of research into such approaches, these
have proven to be quite successful, as many methods and
improvements have been proposed for such models.

However, one can notice distinct differences between natural
language and source code (for example, a line of code oc-
curring after another does not necessarily guarantee the same
temporal relationship in execution, unlike natural language).
As such, researchers have more recently began looking into
other forms of representation for source code that may be more
conducive to learning a decision maker. In particular, many
compiler-based graph representations have been shown to have
some merit in recent studies. [2]], [4] In this exploration, we
look to see if we can improve overall performance by com-
bining the benefit of the compiler-based graph representations
(that encode application-specific knowledge) with the benefit

of the well-researched, high-performance LSTM-based models
by sequentializing the graph representations.

II. RELATED WORKS
A. Deep Learning of Optimization Heuristics

Early models for predicting compiler optimizations rely
on manually designed IR-level features. To extract features
without expert domain knowledge and trial and error, sev-
eral deep learning models for building heuristics have been
proposed: Cummins et al. [5] developed DEEPTUNE, a deep
neural network that predicts compiler-internal optimization
heuristics based on source code. In DEEPTUNE, an OpenCL
program is first generated as tokens and mapped to a sequence
of embedding vectors and then processed by a sequential
LSTM recurrent neural network model. With some optionally
program-level features, the final state of LSTM is fed into a
fully connected neural network to generate a program-level
classification.

B. Graph Representation

CDFG Brauckmann et al. [2] proposed an LLVM-based con-
trol and dataflow graph enriched with calls and memory nodes.
In CDFG, the nodes are labeled with LLVM IR instructions.
The dataflow edges represent operator relationships within the
LLVM IR. CALL edges are added based on dependencies to
return values of functions. MEM edges represent store-load
dependencies to specific memory locations.

2
load)

load)

sext,

etelementpt
\ load

load)

Fig. 1. An example of CDFG representation. The control flow is depicted
by black arrows, the data flow by blue ones, memory dependency by green
ones, and the red arrow represent an external function call.

PROGRAML Cummins et al. [4] enriched the CDFG in
terms of program representation: CDFGs ignore the data
elements of programs, and only instruction opcodes are used
for vertex embeddings. The latent features are thus invariant
to instruction operands, their order, data types, and instruction
modifiers.

PROGRAML represents programs as directed graphs where
statements, identifiers, and immediate values are vertices. First,
it constructs a full-flow graph from an IR by inserting a graph
vertex for each instruction and control flow edges between
them. Second, it introduces additional graph vertices for con-
stant values and variables and adds dataflow edges to capture
relations from constants and variables to the instructions’
operands. Finally, call sites are extracted, and call edges are
inserted from call sites to function entry statements, and from
function exit vertices to call sites.

[externall

Fig. 2. An example of a PROGRAML representation.

C. Graph-to-Sequence Model

The Sequence-to-Sequence learning technique and its nu-
merous variants achieve excellent performance on many tasks.
However, existing SEQ2SEQ models face a significant chal-
lenge in achieving accurate conversion from graph form to the
appropriate sequence given many machine learning tasks have
inputs naturally represented as graphs. Xu et al. [6] introduced
a novel general end-to-end graph-to-sequence neural encoder-
decoder model that maps an input graph to a sequence of
vectors and uses an attention-based LSTM method to decode
the target sequence from these vectors. The attention mecha-
nism they proposed aligns node embeddings and the decoding
sequence to better cope with large graphs, which is helpful for
large-scale graph representation like PROGRAML.

III. METHOD
A. Motivation

Prior work [2] in compiler-based graph representations
proposes new machine learning representations to faithfully
represent the code semantic structure, such as the LLVM-based
control-and dataflow graph enriched with calls and memory
nodes [2] and the dataflow-enriched AST [2]. Through encod-
ing more information than a sequence of code or a sequence
of IR representations, these two representations clearly expose
the semantics of code in a structural way, while discarding
unnecessary information such as the over-constrained ordering
in the sequential representation of the code.

Experiments have been done in [2] using the two rep-
resentations proposed with a GNN-based machine learning
architecture in this paper. While the results for the AST
representation failed to outperform state-of-the-art sequential
models(i.e. DEEPTUNE [5])), the CDFG representation shows
promise in that it was able to outperform the state-of-the-
art. Given the demonstrated improvements for the CDFG
representation, we look to take advantage of this seemingly
superior representation of code.

B. Our Work

It is not surprising to see that the DEEPTUNE [5] model
could have such an impressive performance even though the
input representation of this model is simply a series of C
tokens; tremendous study and research in the NLP community
in the last few years has brought many powerful deep learning
models for sequential representations, from the commonly
used LSTM to recently trending transformers. The embeddings
learned through these deep learning models might reveal the
relationships between the IR instructions in a way that we are
yet to understand. Given the depth of research and proven high
performance of these sequential models, we posit that we may
be able to make the most of both sides and: high-performance
deep learning models for sequential representations and the
information-rich compiler-based graph representations. Our
investigation looks to see if utilizing both of these can increase
overall performance. The general architecture of our work is
shown in Figure

Therefore, we propose to build an architecture that can
combine both graph representations and deep learning models
for sequential representations.

C. Architecture Design

The high-level idea of this architecture is that we will first
generate some sequential representations from the compiler-
based graph representations and feed the transformed sequen-
tial representations into a deep learning model which takes
in sequential representations. Thus, the prediction task can be
performed with the sequential model. We use an LSTM-based
neural network.

For the module which transforms graph representations,
we base our design on previous work on graph to sequence
learning tasks. The GRAPH2SEQ [6] model that we eventually
use is an end-to-end graph-to-sequence neural encoder-decoder

Graph-based
representation

Sequential
representation

Graph2Seq Module

LSTM Predicted Sequence }

Fig. 3. General Architecture for the proposed pipeline.

model that maps an input graph to a sequence of vectors.
Though this model is originally designed for path-finding
problems and Natural Language Generation tasks, we were
able to incorporate their model into our pipeline for the
compiler-based task.

After we obtained the sequential representations from the
GRAPH2SEQ module, we feed the representations directly into
LSTM. Though a, perhaps, better design choice could be made
here by using a transformer-based sequential deep learning
model, our computing resources are limited (by Google Co-
laboratory) and we cannot afford to train a transformer-based
model. Thus, the LSTM model is chosen, and the learning
target (i.e. the ground truth output sequence) will be formatted
based on our evaluation task. In the device mapping evaluation
task that we talk about in the next section, we define the output
sequence as a value indicating whether to do the mapping or
not.

D. Graph Representations and Data Preparation

The graph-representations we use for the input code is
generated based on the enriched LLVM-based control-and
dataflow graph in previous compiler-based graph representa-
tion work [2].

Given an enriched CDFG graph, we assign different at-
tributes to different nodes based on the LLVM parsing results.
This is similar to the text feature for each node in a graph-
based text representation input, in that every word in the input
text has a unique meaning. In our problem setting, we consider
different types of nodes having different “meanings” in the
compiler-based representation.

When building the adjacency list for each node, one node
can appear more than once in another node’s adjacency list,
if the two nodes are found to be connected by the call edges
or the memory edges defined in the paper [2].

The final enriched CDFG-based representation will con-
sist of the nodes, edges, adjacency lists, and attributes for
each node. Then, this representation will be passed to the
GRAPH2SEQ module, outputting a sequential representation
through learning an embedding for each node.

IV. EVALUATION
A. CPU/GPU Mapping Task

One of the common downstream tasks used to evaluate
compiler-based representations is to solve the problem of
CPU/GPU mapping on a heterogeneous system. In this prob-
lem, we are given a heterogeneous system and the source code
of a kernel, and are tasked with picking either the CPU or the
GPU to execute the kernel on. We consider the decision to be
correct if we chose the hardware that would result in a faster
execution. The heterogeneous system that we use for our tests
has an AMD Tahiti 7970 GPU. See [] for the example code
in this device mapping task.

__kernel void Add(__global const int* x,
__global const int* y,
__global int* z, const int d) {
const int id = get_global_id(0);
if (id < d)
z[id] = x[id] + y[id];

Fig. 4. An example of an OpenCL kernel code [2]

B. Experimental Setup

We ran several experiments to evaluate our model.
shows a comparison of the accuracy of our model for various
choices of hyper-parameters. The model parameters that we
vary in an attempt to generate better models include embed-
ding dimension, training batch size, training epochs, and layer
size. At a high level, embedding dimension and layer size are
proportional to model complexity, while training batch size
and training epochs determine the model’s exposure to the
training data.

We considered CDFG and PROGRAML representations
as input data to our model. Note that while the original
model used 100 embedding dimensions for the NLP task, 10
dimensions were sufficient for the compiler-based representa-
tion to obtain relatively good accuracy. Furthermore, for the
CDFG representation our model converged rapidly with good
performance. In particular, we needed to train for only 100
epochs to obtain a 75% accuracy compared to DEEPTUNE
[5]], which needed 1000 epochs to obtain a 79% accuracy (cf.
Table II)).

We can see that for the CDFG representation, the hyper-
parameters in the first row gave the best accuracy, and the
accuracies in general were comparable. We however faced
some challenges while training our model on PROGRAML
data. PROGRAML representations are harder to learn because
the representation size is much larger. In particular, we were
unable to train our model on PROGRAML data with batch size
32 and layer size greater than 1 due to resource limitations.

All of our experiments were run on Google Colaboratory.
Each training epoch took about 2 minutes to complete. The
training for the fourth experiment ended abruptly at epoch 32
due to hardware restrictions enforced by Google Colaboratory.
Notably, this model still reported a non-trivial accuracy.

TABLE I
ACCURACY OF GNN-BASED MODELS FOR DIFFERENT CHOICES OF
HYPER-PARAMETERS

Model Node Train | Sample | Training | Accuracy
embedding | batch layer epochs on test
dimension size size set

CDFG 10 32 4 100 0.75

CDFG 10 16 4 100 0.74

CDFG 50 32 4 100 0.71

CDFG 10 32 8 32 0.66

CDFG 150 32 4 100 0.70

CDFG 100 32 8 100 0.72

CDFG 100 32 16 100 0.70

PROGRAML 10 32 1 100 0.65
PROGRAML 100 4 4 100 0.67
TABLE II
COMPARISON OF GNN-BASED MODELS WITH LSTM-BASED MODELS |[]3]]
[[Model [Accuracy |
GNN CDFG 0.75
PROGRAML 0.67
LSTM | DEEPTUNE [5] 0.79
Barchi et al. [1] 0.76

V. CONCLUSION

To conclude, we have seen that serialized representations
of compiler-based graph representations of code have yielded
acceptable results for the task of mapping a kernel to a
CPU/GPU. However, we have also seen that this representation
was unable to outperform state-of-the-art models for the same
task. We recognize that these results are premature to consider
this investigation fully closed, as these results were produced
under relatively restricted conditions, such as hardware re-
strictions from Google Colaboratory, whereas the state-of-
the-art results (such as that for DEEPTUNE) were produced
under unknown hardware restrictions, and are likely to have
had access to more advanced hardware. Therefore, further
investigation into the utility of our proposed representation
may be worth while in future work, as the results have proven
to be promising thus far.

Hence, for future work, one might look to research what
improvements can be made to these models by introducing
additional model complexity (which would require more ad-
vanced hardware than we had access to for this investigation).
One way to do this is to sequentialize the graph representations
in such a way that it is compatible with more advanced
networks like DEEPTUNE. One might also look into other
methods of serializing graph representations. For example, one
may look into ways of encoding edge information into a serial
representation of a PROGRAML graph.

REFERENCES

[1] FE. Barchi, G. Urgese, E. Macii, and A. Acquaviva, “Code Mapping
in Heterogeneous Platforms Using Deep Learning and LLVM-IR,” in
Proceedings of the 56th Annual Design Automation Conference 2019, ser.
DAC ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: jhttps://doi.org/10.1145/3316781.3317789

[2] A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon, “Compiler-Based
Graph Representations for Deep Learning Models of Code,” in Proceed-
ings of the 29th International Conference on Compiler Construction,
2020, pp. 201-211.

[3] A. Brauckmann, A. Goens, and J. Castrillon, “Compy-learn: A toolbox
for exploring machine learning representations for compilers,” in 2020
Forum for Specification and Design Languages (FDL), 2020, pp. 1-4.

[4] C. Cummins, Z. Fisches, T. Ben-Nun, T. Hoefler, M. O’Boyle, and
H. Leather, “ProGraML: A Graph-based Program Representation for Data
Flow Analysis and Compiler Optimizations,” in Thirty-eighth Interna-
tional Conference on Machine Learning (ICML), 2021.

[5] C.Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-End Deep
Learning of Optimization Heuristics,” in 2017 26th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2017, pp. 219-232.

[6] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2Seq: Graph to Sequence Learning with Attention-based Neural
Networks,” arXiv preprint arXiv:1804.00823, 2018.

https://doi.org/10.1145/3316781.3317789

	Introduction
	Related Works
	Deep Learning of Optimization Heuristics
	Graph Representation
	Graph-to-Sequence Model

	Method
	Motivation
	Our Work
	Architecture Design
	Graph Representations and Data Preparation

	Evaluation
	CPU/GPU Mapping Task
	Experimental Setup

	Conclusion
	References

