
Cooper Stevens Term Project Report EECS 587 Parallel Computing

Introduction

This Parallel Computer term project is tackling the problem of path counting in a social, directed, acyclic
graph (DAG). More specifically, I am looking to compute a function 𝑓𝑓𝑆𝑆:𝑉𝑉 → ℕ such that, given a subset
of vertices 𝑆𝑆 ⊆ 𝑉𝑉, for all 𝑣𝑣 ∈ 𝑉𝑉, 𝑓𝑓𝑆𝑆(𝑣𝑣) is the number of paths from any vertex in 𝑆𝑆 to vertex 𝑣𝑣. This
problem has applications in various fields such as path finding and recommendation algorithms. We will
choose this S uniformly at random of size Θ(|𝑉𝑉|) from the vertices in the graph.

For |𝑆𝑆| = 1, there exists a Θ(|𝑉𝑉| + |𝐸𝐸|) serial algorithm that computes this function. It does so by, for
𝑆𝑆 = 𝑣𝑣𝑜𝑜, first ordering the vertices in the DAG topologically with respect to 𝑣𝑣𝑜𝑜 to get an ordering 𝑂𝑂:𝑉𝑉 →
𝑁𝑁. For this step, ignore any incoming edges to 𝑣𝑣𝑜𝑜. This sorting step can be done in Θ(|𝑉𝑉| + |𝐸𝐸|) time
with a twist on depth-first search (DFS). Note that any vertex not discoverable from 𝑣𝑣𝑜𝑜 will not appear in
this ordering.

From there, since every vertex is adjacent only to vertices that have a higher ordering than itself, we can
simply iterate over the vertices once and make updates to a memo. This first vertex 𝑣𝑣𝑜𝑜 starts with
memo[𝑂𝑂(𝑣𝑣𝑜𝑜)] = memo[0] = 1. The ordering for this iteration is such that the vertex 𝑣𝑣 in the 𝑖𝑖th iteration
has 𝑂𝑂(𝑣𝑣) = 𝑖𝑖. The update step for a vertex v is as follows:

For every edge (𝑣𝑣, 𝑣𝑣’): // where 𝑂𝑂(𝑣𝑣’) > 𝑂𝑂(𝑣𝑣)

 memo[𝑂𝑂(𝑣𝑣’)] += memo[𝑂𝑂(𝑣𝑣)];

Once you have done this for all the vertices in the ordering, then the function 𝑓𝑓𝑆𝑆 is 𝑓𝑓𝑆𝑆(𝑣𝑣) = memo[𝑂𝑂(𝑣𝑣)]
for 𝑣𝑣 in the ordering 𝑂𝑂, and 𝑓𝑓𝑆𝑆(𝑣𝑣) = 0 otherwise. Proof of correctness is omitted, but the idea is as
follows:

We start with the knowledge that the number of paths from 𝑣𝑣𝑜𝑜 to 𝑣𝑣𝑜𝑜 is 1 (which is why we start
with memo[0] = 1). Then, for any neighbor 𝑣𝑣’ of the current vertex 𝑣𝑣, since there are
memo[𝑂𝑂(𝑣𝑣)] paths from 𝑣𝑣𝑜𝑜 to 𝑣𝑣, we can make a path from 𝑣𝑣𝑜𝑜 to 𝑣𝑣’ by concatenating the edge
(𝑣𝑣, 𝑣𝑣’) to any path from 𝑣𝑣𝑜𝑜 to 𝑣𝑣. There are precisely memo[𝑂𝑂(𝑣𝑣)] of these paths.

As you may be able to tell from the implementation of this algorithm, this algorithm for |𝑆𝑆| = 1 can be
generalized to general 𝑆𝑆’ ⊆ 𝑉𝑉 by running the algorithm with 𝑆𝑆 = 𝑣𝑣 for every 𝑣𝑣 ∈ 𝑆𝑆’, then adding all the
functions together. This can be written as 𝑓𝑓𝑆𝑆(𝑣𝑣) = ∑ 𝑓𝑓𝑥𝑥(𝑣𝑣)𝑥𝑥∈𝑆𝑆 .

In parallel computing, this is what one might call “embarrassingly parallel”, as we can compute each 𝑓𝑓{𝑥𝑥}
independently from 𝑓𝑓{𝑦𝑦} for all 𝑦𝑦 ∈ 𝑆𝑆  ∖ {𝑥𝑥}, and the only processor-to-processor communication
required to combine the functions is a reduction sum which can be compute with a simple call to a
library function. Still, though, as a reference, I have implemented this “embarrassingly parallel” solution
to this problem and will occasionally refer to its runtime results.

Cooper Stevens Term Project Report EECS 587 Parallel Computing

Parallelization

In order to properly parallelize a solution to this problem, we need to consider the short-comings of the
“embarrassingly parallel” solution. The paper “Guided Walk: A Scalable Recommendation Algorithm for
Complex Heterogeneous Social Networks” by R. Levin, et al., provides a Pregel algorithm that computes
𝑓𝑓𝑆𝑆 for arbitrary 𝑆𝑆:

They also describe that:

“The content of each vertex is a pair containing: (a) the PC updated according to current super-step 𝑖𝑖
and (b) its value before the update took place (i.e., the PC value at superstep 𝑗𝑗 < 𝑖𝑖). The latter is
needed to keep track of the change done to the PC in the current super-step by vprog. Initially these

Cooper Stevens Term Project Report EECS 587 Parallel Computing

values are set to 1, 0 respectively for vertices in 𝑆𝑆 and 0, 0 for all other vertices - this represents the
starting values, i.e., in super-step 0. An initial message of 0 is sent to all vertices in super-step 1.”

In a Pregel algorithm, the best way to understand the computer design is to think of each vertex as a
single processor. The reference paper can be accessed at the following link:
https://dl.acm.org/doi/pdf/10.1145/2959100.2959143

Upon a deeper examination, we can see that this algorithm utilizes the same idea as the algorithm for
|𝑆𝑆| = 1 by starting a counter to be 1 at every vertex in 𝑆𝑆 (and 0 elsewhere), and subsequently sending
any update to its count to its neighboring vertices. The difference is that this algorithm does this for
|𝑆𝑆| ≥ 1, and in doing so lose the benefit of being able to traverse a topological ordering (because there
is no reasonable topological ordering for |𝑆𝑆| > 1). Still, though, this algorithm is likely to run faster than
the “embarrassingly parallel” solution because, for example, if some vertex receives more than one
message in a super-step, these messages are merged into a single update, which is in-turn distributed as
a single message to each of the neighbors. In the “embarrassingly parallel” solution, such an event
would occur independently on separate processors, and so each incoming message would be sent to
each neighbor. Most of my parallel algorithms that I will discuss are loosely based on this Pregel
algorithm. The difference between this algorithm and my parallel algorithms results from a mixture of
experimentation and from logical reasoning regarding possible areas for improvement.

We can also recognize a short-coming of this Pregel algorithm design: since each vertex is on its own
processor, we do not have any ability to combine messages from the same vertices. One example
wherein we might want to combine the messages of two vertices is if two vertices 𝑣𝑣, 𝑣𝑣’ ∈ 𝑉𝑉 have the
same set of neighbors 𝑁𝑁.

Suppose 𝑣𝑣 and 𝑣𝑣’ each, after their respective merge steps, are left with an incoming message of m and
𝑚𝑚’, respectively. In the Pregel formulation, since 𝑣𝑣 and 𝑣𝑣’ are on separate processors, each of these
processors need to send their corresponding update to each of their neighbors, resulting in |𝑁𝑁|
messages from each. However, if 𝑣𝑣 and 𝑣𝑣’ were to be on the same processor, we could combine the
messages of 𝑣𝑣 and 𝑣𝑣’ into a single message of (𝑚𝑚 + 𝑚𝑚’) and send this to each of the |𝑁𝑁| neighbors.

To see why this maintains correctness, suppose for an arbitrary 𝑛𝑛 ∈ 𝑁𝑁 that n receives the messages
{Δ1,Δ2, … ,Δ𝑘𝑘} from its other incoming edges (besides those from 𝑣𝑣 and 𝑣𝑣’). In the case where each of 𝑚𝑚
and m’ were sent separately, n receives {Δ1,Δ2, … ,Δ𝑘𝑘 ,𝑚𝑚,𝑚𝑚’} and merges them into a single update
with value 𝑚𝑚 + 𝑚𝑚’ + ∑ Δ𝑖𝑖𝑘𝑘

𝑖𝑖=1 . Whereas when only one message of (𝑚𝑚 + 𝑚𝑚’) is sent from the processor
with 𝑣𝑣 and 𝑣𝑣’, 𝑛𝑛 receives a single message {Δ1,Δ2, … ,Δ𝑘𝑘 ,𝑚𝑚 + 𝑚𝑚’} and merges them into a single update
value (𝑚𝑚 + 𝑚𝑚’) + ∑ Δ𝑖𝑖𝑘𝑘

𝑖𝑖=1 . In both cases, the update to the vertex 𝑛𝑛 is identical.

The tradeoff here is that instead of sending 2|𝑁𝑁| separate messages, we send |𝑁𝑁| messages after
computing 𝑚𝑚 + 𝑚𝑚’. As an added benefit to the system, now the processor that owns 𝑛𝑛 ∈ 𝑁𝑁 does not
need to compute (𝑚𝑚 +𝑚𝑚’) in the merge step because this value has already been supplied. In
summary, this is |𝑁𝑁| saved additions (spread evenly across |𝑁𝑁| processors) and |𝑁𝑁| saved messages at
the cost of computing one addition. Therefore, it is desirable to combine the messages 𝑚𝑚,𝑚𝑚’ into a
single value 𝑚𝑚 + 𝑚𝑚’.

https://dl.acm.org/doi/pdf/10.1145/2959100.2959143

Cooper Stevens Term Project Report EECS 587 Parallel Computing

Note that this combination reduction can be performed for an arbitrary set of vertices that have the
same set of neighbors and are owned by a single processor. This is the basis for my first attempt at non-
trivially parallelizing the problem. To obtain a partition of the vertices onto 𝑃𝑃 processors, I pass the
undirected version of the graph to METIS which returns a partition. The METIS algorithm takes several
hyperparameters that may be worth investigating to see if the partition can drastically change
performance, but I have not done this in this investigation.

Given a partition of the vertices onto 𝑃𝑃 processors, for each processor 𝑝𝑝, we have a set of vertices that 𝑝𝑝
owns 𝑉𝑉𝑝𝑝. Partition 𝑉𝑉𝑝𝑝 by the edge set of each vertex. That is to say, every vertex with the same set of
neighbors is put into the same piece of the partition. Let this partition be given by {𝑉𝑉1,𝑉𝑉2, … ,𝑉𝑉𝑜𝑜} where
there are no distinct sets of neighbors among all the vertices owned by 𝑝𝑝. We will refer to these as edge
sets. Each of these 𝑉𝑉𝑖𝑖 have an associated set of receivers 𝐸𝐸𝑖𝑖 by which every message sent by any of 𝑣𝑣 ∈
𝑉𝑉𝑖𝑖 is received.

Note that these receivers in 𝐸𝐸𝑖𝑖 may be owned by different processors. For this implementation, we need
to communicate the subset of receivers to the owning processor of those receivers. This requires that
we partition 𝐸𝐸𝑖𝑖 by the processor each receiver is owned by to get a P-way partition {𝐸𝐸𝑖𝑖1,𝐸𝐸𝑖𝑖2, … ,𝐸𝐸𝑖𝑖𝑃𝑃}
(some of which may be empty if the vertices in 𝑉𝑉𝑖𝑖 have no neighbors on a particular processor). For each
of these nonempty sets 𝐸𝐸𝑖𝑖

𝑞𝑞, we communicate the set its associated owner, processor q. With this set, we
also include the index from the edge set partition: 𝑖𝑖. We do this so that, later, when 𝑉𝑉𝑖𝑖 wants to send a
message m to its receivers, it need only communicate the message m and edge partition number 𝑖𝑖 for
the receiving processor q to know what the message is (m) and which vertices to apply the update to
�𝐸𝐸𝑖𝑖

𝑞𝑞�.

In MPI, a message is also accompanied by a number indicating from which processor the message was
received (i.e. the source). Therefore, the receiving processor 𝑞𝑞 is able to differentiate messages from
different processors for receiving sets with the same index on the original processor. For example, if
processor q received two messages, with form (update, source, index), (𝑚𝑚,𝑝𝑝, 𝑖𝑖) and (𝑚𝑚’,𝑝𝑝’, 𝑖𝑖), processor
𝑞𝑞 knows to apply the update 𝑚𝑚 to 𝐸𝐸𝑖𝑖 that it received from processor 𝑝𝑝, and to apply the update 𝑚𝑚’ to 𝐸𝐸𝑖𝑖
that it received from processor 𝑝𝑝’.

For the message sending scheme to communicate these edge sets to external processors, I used a
standard MPI_Send to communicate the receiving vertices and the index (in the tag argument). For the
receiving scheme, one difficulty inherent to this communication is that a processor does not know how
many edge sets it will be sent from other processors: it could be as many as |𝑉𝑉| − �𝑉𝑉𝑝𝑝� (which happens
when, on every other processor, every vertex on that processor has a different set of neighbors), or as
few as 0 (if every vertex on the current processor has no edges incoming from a vertex on a different
processor, i.e. the subgraph induced by the set of vertices on the current processor is not reachable
from any other vertex). Therefore, it is logical to design the edge set receiving scheme such that it can
receive an arbitrary number of edge sets. In the following pseudocode, I use Recv(𝑚𝑚, 𝑠𝑠, 𝑖𝑖, 𝑐𝑐) to indicate
using MPI_Recv to receive a message 𝑚𝑚 of length 𝑐𝑐 with tag 𝑖𝑖 from processor 𝑠𝑠. I accomplish this
receiving scheme as follows:

Use the non-blocking MPI_Iprobe function to check for any incoming messages

// If there is, indeed, an incoming message, MPI_Iprobe returns the source 𝑠𝑠 and tag 𝑖𝑖 of that message

Cooper Stevens Term Project Report EECS 587 Parallel Computing

While there is an incoming message:

 Use MPI_Get_count to extract the size 𝑐𝑐 of the message // this is the size of the edge set

 Recv(𝑚𝑚, 𝑠𝑠, 𝑖𝑖, 𝑐𝑐)

 //Store the edge set 𝑚𝑚 of size 𝑐𝑐 from processor 𝑠𝑠 where it has an associated edge set index of 𝑖𝑖

 RECEIVERS[𝑠𝑠][𝑖𝑖] = 𝑚𝑚

 Use MPI_Iprobe to check if there are still incoming messages to be received

Preceding this receiving scheme, we must decide how to stall a processor that finished sending its edge
sets early and make it wait for the others to finish sending theirs. To this end, I tried a couple different
stalling schema. This first scheme that I tried was simply to use MPI_Barrier after sending all the edge
sets on every processor in order to guarantee that all edge sets were ready to be received before any
processor started checking for incoming messages and receiving them using MPI_Iprobe.

I also tried a non-blocking type of barrier MPI_Ibarrier and an occasional MPI_Test to complete this task.
For a given processor, once it was done sending all of its edge sets, it would hit the MPI_Ibarrier and
start looking to receive a message (using MPI_Iprobe). If there was a message to receive, it would
receive it and store the source, edge set, and edge set index properly for later use
(RECEIVERS[source][edges set index] = edge set, just like the above pseudocode). It would continue to
receive like this until there were no messages to receive (i.e. MPI_Iprobe returns false), then it would
MPI_Test the MPI_Ibarrier again to check if all processors have reached the barrier yet. If not, it repeats
this process by calling MPI_Iprobe again. If so, then it goes into one last loop of calling MPI_Iprobe to
check for any messages that got sent by the last few processors to reach the MPI_Ibarrier. The potential
upside of this receiving scheme is that it permits a processor that has completed all of its MPI_Sends to
start receiving any edge sets from other processors, instead of simply waiting for all edge sets on every
processor to be sent. The tradeoff here, however, is the additional overhead that comes with non-
blocking communication like MPI_Ibarrier and MPI_Test.

After some experimentation, I found that, for this use, the added overhead of the non-blocking
communication overcomes the benefit of receiving earlier on the earliest processors. For example, for a
graph with |𝑉𝑉| = 500000,𝐾𝐾1 = 6,𝐾𝐾2 = 12, and |𝐸𝐸| = 37209707, with P=36 processors, using the
receiving scheme with a non-blocking barrier, 14.261− 11.9979 = 2.2631 seconds were added to the
edge set processing time. As such, my algorithms going forward will adopt the former scheme of
receiving communications using a blocking MPI_Barrier.

Now that all edge sets have been communicated and received, the path counting algorithm can begin.

Just like the given Pregel algorithm, we begin by initiating all vertices in S with (1, 0) and others with (0,
0). We can now begin sending updates. As a general overview, the sending scheme stores a running
total 𝑡𝑡𝑖𝑖 for each edge set 𝑉𝑉𝑖𝑖 in which we will reduce-sum the updates for each 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖. We also have a
need to keep track of messages that would be sent from a processor to itself. This occurs when 𝐸𝐸𝑖𝑖

𝑝𝑝 is
non-empty, i.e. when a vertex has a neighbor that is owned by the same processor. We hope for this to
be the usual case as determined by the input partition so as to minimize communication. We will keep

Cooper Stevens Term Project Report EECS 587 Parallel Computing

track of these “local messages” with a variable 𝑙𝑙𝑖𝑖 for each edge set. Both 𝑡𝑡𝑖𝑖 and 𝑙𝑙𝑖𝑖 are initialized to 0 for
all 𝑖𝑖 ∈ {1, 2, … , 𝑜𝑜}.

In the following pseudocode, I use Send(𝑚𝑚,𝑝𝑝, 𝑖𝑖, 1) to indicate using MPI_Send to send a message 𝑚𝑚 of
length 1 with tag 𝑖𝑖 to processor 𝑝𝑝. 𝑚𝑚 is length 1 because it is an integer. The sending scheme is as
follows:

For each 𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝:

if 𝑣𝑣 was updated by 𝑚𝑚 > 0 in the previous super-step:

 get 𝑖𝑖 s.t. 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖 // this is 𝑣𝑣’s associated edge set index

 𝑡𝑡𝑖𝑖 += 𝑚𝑚

For each 𝑖𝑖 = 1, 2, … , 𝑜𝑜 s.t. 𝑡𝑡𝑖𝑖 > 0:

For each 𝑞𝑞 = 1, 2, … ,𝑃𝑃 s.t. 𝐸𝐸𝑖𝑖
𝑞𝑞 is non-empty: // that is to say, edge set 𝑉𝑉𝑖𝑖 has at least one

receiver on processor 𝑞𝑞

 If 𝑝𝑝 == 𝑞𝑞: // if this set of receivers is owned by the current processor

 𝑙𝑙𝑖𝑖 = 𝑡𝑡𝑖𝑖

 else:

 Send(𝑡𝑡𝑖𝑖, 𝑞𝑞, 𝑖𝑖, 1)

This sending scheme reduces all messages for a given edge set 𝑉𝑉𝑖𝑖 into a single sum 𝑡𝑡𝑖𝑖, then sends 𝑡𝑡𝑖𝑖 to all
external processors that have some receiving edge from 𝑉𝑉𝑖𝑖. In the case that 𝑉𝑉𝑖𝑖 has some received on the
local processor, this scheme also stores 𝑡𝑡𝑖𝑖 into 𝑙𝑙𝑖𝑖 for later use in the merge step so that we do not have
the processor 𝑝𝑝 Send(𝑡𝑡𝑖𝑖,𝑝𝑝, 𝑖𝑖) which is a message to itself. This is a another way in which my methods of
parallelization take advantage of having a small number of processors 𝑃𝑃 (as opposed to 𝑃𝑃 = |𝑉𝑉| in the
Pregel scheme): since we have to put more than one vertex on each processor, we can take advantage
by not having to use the MPI communication construct to send messages, but rather just store the
would-be messages locally to read from at a later time.

Next, after the send step, we come the merge step. One commonality between my method of
parallelization of send step and with the Pregel algorithm’s method is that we cannot know precisely
how many messages we are going to have to merge in the merge step. One quick and clear way to get
an upper bound of such a value is the number of edge sets that we received in the edge set
communication preprocessing step (because we will at most receive one message from each incoming
edge set). But we are not guaranteed to meet exactly this bound because, for example, an edge set that
received no updates in the previous super-step will not send any messages in the subsequent send step
(because the update amount in the previous step 𝑚𝑚 = 0). Therefore, it is logical to design the merge

Cooper Stevens Term Project Report EECS 587 Parallel Computing

step to be able to receive any number of incoming messages. Additionally, in order to properly merge
any incoming messages for a vertex 𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝, we maintain a running total Δ𝑣𝑣 for each. Δ𝑣𝑣 is initialized to 0
for all 𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝.

In the following pseudocode, I use Recv(𝑚𝑚, 𝑠𝑠, 𝑖𝑖, 1) to indicate using MPI_Recv to receive a message m of
length 1 with tag 𝑖𝑖 from processor 𝑠𝑠. 𝑚𝑚 is of length 1 because it is an integer. The merge step goes as
follows:

Use the non-blocking MPI_Iprobe function to check for any incoming messages

While there is an incoming message:

 Recv(𝑚𝑚, 𝑠𝑠, 𝑖𝑖, 1)

 For each receiving vertex 𝑟𝑟 ∈ RECEIVERS[𝑠𝑠][𝑖𝑖]:

 Δ𝑟𝑟 += 𝑚𝑚

 Use MPI_Iprobe to check if there are still incoming messages to be received

For each 𝑖𝑖 = 1, 2, … , 𝑜𝑜 s.t. 𝑙𝑙𝑖𝑖 > 0:

 For each receiving vertex 𝑟𝑟 ∈ RECEIVERS[𝑝𝑝][𝑖𝑖]:

 Δ𝑟𝑟 += 𝑙𝑙𝑖𝑖

Between the send and merge steps, we have the same conundrum as before regarding how to stall a
processor that finishes all of its sends earlier than the others. I considered the same stalling schema
(blocking barrier vs. non-blocking barrier), and after some experimentation, I found that a blocking
barrier for the very first super-step is ideal, whereas a non-blocking barrier is better for the subsequent
iterations. For example, for a graph with |𝑉𝑉| = 500000,𝐾𝐾1 = 6,𝐾𝐾2 = 12, and |𝐸𝐸| = 37209707, with
𝑃𝑃 = 36 processors, utilizing a non-blocking barrier for the later super-steps decreased the computation
time for path counting by 53.3402 − 48.7103 = 4.6299 seconds. From there, utilizing a non-blocking
barrier in the very first super-step added 49.2697 − 48.7103 = 0.5594 seconds to the computation
time. Therefore, all future algorithms I discuss will utilize these two results by setting the blocking types
for the super-steps accordingly.

After the merge step, we have completed one super-step. As described by the Pregel algorithm, we are
to terminate the algorithm if no messages were sent (by any processor) in the most recent super-step.
The difficulty lies in that a processor p can only know if it itself sent any messages, or if some other
processor sent a message to p. We recognize that the boolean value of whether any processor sent
some message is equivalent to ⋁ 𝑃𝑃

𝑞𝑞=1 (processor 𝑞𝑞 sent some message). We can obtain this value by
making use of MPI_Allreduce with the predefined MPI_Operation MPI_LOR. MPI_Allreduce with
predefined MPI_Operation MPI_LOR takes in a value 𝑏𝑏𝑞𝑞 from each of the 𝑃𝑃 processors, and returns
⋁ 𝑏𝑏𝑞𝑞𝑃𝑃
𝑞𝑞=1 to all of them.

At a later time, when attempting to speedup the parallel computations, I realized that this
MPI_Allreduce operation acts as a blocking barrier for each processor. However, it would be best to use

Cooper Stevens Term Project Report EECS 587 Parallel Computing

an optional non-blocking barrier here so that those processors that already know a message was sent
can continue on to the next super-step instead of waiting for all processors to continue. As such, I
redesign this Boolean OR reduction step as follows:

// 𝑏𝑏𝑝𝑝 holds the Boolean value indicating if processor 𝑝𝑝 sent a message in the most recent super-step

Use MPI_Iallreduce to perform a non-blocking OR reduction, passing parameter 𝑏𝑏𝑝𝑝, and storing into 𝐵𝐵

If (¬𝑏𝑏𝑝𝑝) :

 Use MPI_Wait to wait for the MPI_Iallreduce operation to complete

If (𝑏𝑏𝑝𝑝 ∨ 𝐵𝐵):

 Continue to the next super-step

Else:

 Terminate the path counting algorithm on all processors

It is clear to see that the termination condition for the algorithm is that 𝑏𝑏𝑞𝑞 = 𝐵𝐵 = false on all processors.
This happens if and only if 𝑏𝑏𝑞𝑞 = false for all 𝑞𝑞 ∈ {1, 2, … ,𝑃𝑃} (meaning that every processor sent no
messages), in which case all processors will call MPI_Wait and wait for the reduction operation to
complete before proceeding to the final else clause.

This reduction scheme using a non-blocking reduction proved to be an improvement over the reduction
scheme that simply used MPI_Allreduce. For example, in a graph with |𝑉𝑉| = 100000,𝐾𝐾1 = 6,𝐾𝐾2 = 12,
and |𝐸𝐸| = 7224554, with 𝑃𝑃 = 32, using the non-blocking reduction scheme improved the path count
computation time by 6.41903 − 0.266332 = 6.152698 seconds which is a tremendous 96% speedup
for this test case.

After completing the reduction operation, if we continue into the next super-step, we compute what
corresponds to the vprog function in the Pregel algorithm. There is no processor-to-processor
communication in this algorithm. It just simply completes the update for each vertex 𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝 given Δ𝑣𝑣.

Improving on the Parallel Algorithm

After having completed the “Vanilla edge sets” algorithm described above, I thought for a long while
about what optimizations I could make. After stepping through the algorithm a few times, I found a
possible area for improvement: the above algorithm, in the step where we compute the edge sets, we
first partition 𝑉𝑉𝑝𝑝 by their sets of neighbors, then partition each of those sets of neighbors by the
processors they are owned by. I realized that it makes more sense to partition by the owning processor
first, then partition by sets of receivers. This change makes sense because a vertex 𝑣𝑣 on processor 𝑝𝑝
sends its message once to each processor with a neighbor already, so if there is another vertex on the 𝑝𝑝
with the same set of receivers on a particular processor, we can combine these messages to only send
one while maintaining correctness.

Cooper Stevens Term Project Report EECS 587 Parallel Computing

Upon further inspection, it is reasonable to expect that this will increase the number of distinct edge
sets o because the edge sets in the original partitioning method are all split into at most p partitions,
each of which is an edge set in its own right. Hence, we expect that the edge set preprocessing time will
increase since there are more edge sets to consider when first matching up all vertices’ partitioned-by-𝑃𝑃
edge sets (there are more sets per vertex to look for, and more sets to look through from previous
vertices). It also reasonable to expect the cardinality of each edge set (the number of times the edge set
appears in some vertex’s partition) to increase since all edge sets are more finely-grained with fewer
elements and so are more likely to be the same as another.

The partitioning method has some nice properties such as: if two vertices on the same processor have
the same set of neighbors except for one has one additional neighbor, then in the original partitioning
method, these vertices would be placed into different edge sets which fails to take advantage of the
near-perfect similarity. But the above proposed method would assign these vertices all of the same set
numbers except for 1, so almost all of the work we do for one can be applied to both. This is a desirable
trait to have as it allows for more granularity in similarity for vertices to share work, whereas the original
method is a binary measure of similarity (they have the same neighbors or they do not). I will refer to
this variant of the algorithm as the 𝑃𝑃-ways edge sets algorithm.

The tradeoff here in using this partitioning method is that while we get to combine more messages
because edge set cardinality is increased (thereby decreasing communication), whenever a message is
received by a vertex, we now have to distribute that message to many edge sets instead of just one
edge set like in the previous formulation. In particular, a slowdown could occur in the new version of the
sending scheme. In the following pseudocode, EdgeSetIdx[𝑣𝑣] is the set of edge set indices associated
with vertex 𝑣𝑣, and EdgeSetIdxToOwnerOfReceivers[𝑖𝑖] is the owner of the receiving vertices of the edge
set with index 𝑖𝑖 on the current processor 𝑝𝑝.

For each 𝑣𝑣 ∈ 𝑉𝑉𝑝𝑝:

if 𝑣𝑣 was updated by 𝑚𝑚 > 0 in the previous super-step:

 for all 𝑖𝑖 ∈ EdgeSetIdx[𝑣𝑣]:

 𝑡𝑡𝑖𝑖+= 𝑚𝑚

For each 𝑖𝑖 = 1, 2, … , 𝑜𝑜 s.t. 𝑡𝑡𝑖𝑖 > 0:

 𝑞𝑞 = EdgeSetIdxToOwnerOfReceivers[𝑖𝑖]

 If 𝑝𝑝 == 𝑞𝑞: // if this set of receivers is owned by the current processor

 𝑙𝑙𝑖𝑖 = 𝑡𝑡𝑖𝑖

 else:

 Send(𝑡𝑡𝑖𝑖, 𝑞𝑞, 𝑖𝑖, 1)

In the first for loop, each vertex’s update 𝑚𝑚 has to be added to 𝑡𝑡𝑖𝑖 for all 𝑖𝑖 ∈ EdgeSetIdx[𝑣𝑣] instead of just
a single 𝑡𝑡𝑖𝑖 like before. Therefore, while would typically expect runtime to improve by using this
partitioning method, it is feasible that the runtime can become worse. This would happen in cases

Cooper Stevens Term Project Report EECS 587 Parallel Computing

where the number of sets per vertex (which is ≤ 𝑝𝑝) is very large compared to the number of edge set
intersections (low cardinality), resulting in minimal benefit to combining messages while suffering in
having to update multiple edge sets. For very large 𝑃𝑃, we do not expect to see this phenomenon
because the edge sets are very finely grained and so we expect many intersections (high cardinality).
And for very small 𝑃𝑃, we also do not expect to observe this because the number of edge sets per vertex
is still small (because it is no more than 𝑝𝑝). However, for mid-range 𝑃𝑃, it is feasible to observe this
phenomenon.

Here are a few graphs that very clearly demonstrate this phenomenon in practice:

0.03125
0.0625

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1 2 4 8 16 32 64

V=1000_K1=100_K2=300

vanilla P-ways

0.0625
0.125

0.25
0.5

1
2
4
8

16
32
64

128
256
512

1 2 4 8 16 32 64

V=10000_K1=6_K2=12 Vx0.75

vanilla p-ways

Cooper Stevens Term Project Report EECS 587 Parallel Computing

It is worth noting that all values at 300 seconds resulted from a job timeout. As can be seen, this
partitioning method is usually an improvement, but the runtimes can be unreliable. It can happen that
some update on a processor takes an exceptionally long time, causing the whole program to go over
time. I will refer to this as getting “stuck”, but know that the algorithm is not actually stuck, but rather
forced to finish a long-winded processor.

As I worked even more to try to shave off time from the parallel algorithm, I realized that a likely holdup
on runtime improvements is the communication volume. In particular, I realized that the number of
single-data communications is very large, and each communication brings with it additional overhead.
Hence, I redesigned the message-passing scheme so that, in a particular super-step, all messages from
processor 𝑝𝑝 to processor 𝑞𝑞 are passed with a single communication by communicating 2 times the
number of messages I would have sent previously. To do so, in the send function, whenever I would
have sent a message (𝑚𝑚, 𝑞𝑞, 𝑖𝑖, 1) in the original scheme, I instead append both 𝑚𝑚 and 𝑖𝑖 to an array. After
all message-tag pairs have been appended, I then send the entire array as one message (array, 𝑞𝑞, 0,
numMessages × 2). This redesigned messaging scheme also forces a redesign of the receiving scheme in
the merge function to allow for arbitrarily long messages of even length. After some experimentation,
my hypothesis proved correct when I found that for a graph with |𝑉𝑉| = 500000,𝐾𝐾1 = 6,𝐾𝐾2 = 12, and
|𝐸𝐸| = 37209707, with 𝑃𝑃 = 36 processors, the runtime decreased by 68.8411 − 53.3402 = 15.5009
seconds which is a 23% decrease.

At this point, I was running low on ideas for optimizations, so I started analyzing the original Pregel
algorithm to see if there were any shortcuts I could take. It was at this point that I realized that the
barrier between the send operation and the merge operation is not required! Even with the barrier
gone, it is clear to see that correctness is maintained in that:

If a processor 𝑝𝑝 does not receive a message sent to it by 𝑞𝑞 because 𝑝𝑝 finished its sends and receives
before 𝑞𝑞 sent the message, then 𝑝𝑝 will fail to take into account that messages updates and distribute

0.015625
0.03125

0.0625
0.125

0.25
0.5

1
2
4
8

16
32
64

128
256
512

1 2 4 8 16 32 64

V=3000_K1=6_K2=12 Vx0.75

vanilla p-ways

Cooper Stevens Term Project Report EECS 587 Parallel Computing

them accordingly. That is, until the next super-step (the next super-step is guaranteed because 𝑞𝑞 sent a
message) when 𝑝𝑝 probes for incoming messages again. Even though 𝑝𝑝 received this update in the wrong
super-step, this is okay because when 𝑝𝑝 receives it later, the same updates will be made and the
updated will be distributed in the same manner, perhaps merged with message from different super-
steps, but this is okay as addition is associative and, eventually, the message will be distributed
everywhere it needs to go. Hence, I made an effort to improve the runtime by removing the barrier
between the send and merge operations. The results, however, were surprising:

As can be seen in the graphs below, removing the barrier did not make much of a change for these
graphs. Usually, the time increased after removing the barrier, but there are a few instances where
removing the barrier did end up decreasing the runtime. As for whether or not this change should be
adopted, it most certainly should not because there are no perceivable gains in the given examples, and
for a graph with |𝑉𝑉| = 500000,𝐾𝐾1 = 6,𝐾𝐾2 = 12, and |𝐸𝐸| = 37209707, the algorithm was not able to
terminate in the 5-minute time limit with the barrier removed, but was able to terminate in about a
minute with the barrier present. Therefore, we have seen that this change offers no perceivable runtime
benefit at the risk of a very large increase in runtime, so I do not adopt this change into my algorithms.
After stepping through the algorithm in debug mode, I’ve realized that the barrier not only serves as a
guarantee that all messages get received in the same super-step, but also serves to gain a larger benefit
from the merge function by forcing that all available messages are merged each time. This corresponds
to more messages included in each update, corresponding to fewer updates being sent, corresponding
to less communication.

The last change to my parallel algorithm that I made to improve runtime was to take further advantage
of having more than one vertex on a processor. I modified the 𝑃𝑃-way edge set partition algorithm so
that when we are keeping track of the local messages to be sent to local vertices, instead of compiling
them all into some buffer and merging them with the rest of the external messages in the merge step,
we can instead propagate the local message to the local vertices, causing us to update their respective
edge set update values (some of which are local), and we can recurse! We continue to recurse until all
messages are outgoing and there are no local messages (this is guaranteed to happen because the graph
is a DAG). Only at this point do we actually send the outgoing updates to their respective processors.
One potential downside of this change is that if some processor has lots of local updates to process and
another has very few, then the latter may find itself waiting at the subsequent barrier for the first one to
finish which could result in an overall slowdown. I will refer to this update algorithm as 𝑃𝑃-ways edge sets
with local propagation.

Cooper Stevens Term Project Report EECS 587 Parallel Computing

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1 2 4 8 16 32 64

V=30000_K1=6_K2=12 sample size 0.1|V|

no local propagation local propagation

0.25

1

4

16

64

256

1 2 4 8 16 32 64

V=30000_K1=6_K2=12 sample size 0.75|V|

no local propagation local propagation

1

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64

V=100000_K1=6_K2=3 sample size 0.75|V|

no local propagation local propagation

Cooper Stevens Term Project Report EECS 587 Parallel Computing

This recursion step on handling all local messages will cause many more would-be outgoing messages
into a single outgoing message, thereby reducing total communication.

As I was running some timing runs for this algorithm and comparing it against my fastest serial
algorithm, I quickly realized that it was, in fact, not the fastest serial algorithm when I saw that this
parallel algorithm was able to outperform the serial by a good deal. Upon further inspection, the local
message propagation method outlined above suffices as a serial algorithm on its own. This serial
algorithm is very fast, as you can see in the next section.

Scalability

The algorithm has 2 inputs: the social DAG and a subset of vertices 𝑆𝑆. After discussing with the professor
way to generate social graphs that fit this problem, we settled on the following:

The social DAG has 3 parameters: the number of vertices |𝑉𝑉|, and 2 associativity constants 𝐾𝐾1 and 𝐾𝐾2.
Start with a complete DAG with 𝐾𝐾1 + 1 vertices.

For every vertex 𝑣𝑣 you add from 𝐾𝐾1 + 2 to |𝑉𝑉|, connect 𝑣𝑣 to a random sample of 𝐾𝐾1 of the vertices
already present.

For each of those 𝐾𝐾1 vertices 𝑣𝑣 just connected to, connect 𝑣𝑣 to a random sample of 𝐾𝐾2 of their
neighbors.

In this way, we generate a social DAG where each vertex has no more than 𝐾𝐾1 + 𝐾𝐾2 × 𝐾𝐾1 = 𝐾𝐾1(𝐾𝐾2 + 1)
neighbors.

Hence, the graph has no more than |𝑉𝑉|𝐾𝐾1(𝐾𝐾2 + 1) edges.

First, I will reason about the scalability of the proposed algorithms w.r.t. the size of 𝑆𝑆.

Cooper Stevens Term Project Report EECS 587 Parallel Computing

As seen in the graph above, it is clear that, for 𝑃𝑃 = 1, the runtimes of these solutions are mostly
independent of |𝑆𝑆|. This makes sense because the number of times each algorithm loops is determined
by the length of the longest path starting in 𝑆𝑆 (this is because the 1 starting on that node at the start of
the longest path has to traverse the entire path before the algorithm can terminate). Adding more
vertices to 𝑆𝑆 just increases the likelihood that that vertex is the start of an even longer path, but this is
not likely to increase the length of the longest path from 𝑆𝑆 by much after adding just a few vertices.
There does seem to be a slight upward trend which can be explained by one of the added vertices make
the longest path from 𝑆𝑆 slightly longer, but I would still consider this trend to be mostly constant. This
trend is maintained for larger 𝑃𝑃 as well.

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000

Ru
nt

im
e

(s
ec

on
ds

)

|S|

Scalability of Algorithms for P=1, |V|=100000, K1=6, K2=12

Serial Time P-Way Edge Sets and Local Propagation P-Way Edge Sets Vanilla Edge Sets

0

1

2

3

4

5

6

7

8

9

0 10000 20000 30000 40000 50000 60000 70000 80000

Ru
nt

im
e

(s
ec

on
ds

)

|S|

Scalability of Algorithms for P=36, |V|=100000, K1=6, K2=12

P-Way Edge Sets and Local Propagation P-Way Edge Sets Vanilla Edge Sets

Cooper Stevens Term Project Report EECS 587 Parallel Computing

Henceforth, my analyses will not be concerned with the size of 𝑆𝑆 because it appears to be irrelevant to
the runtime.

Now, to reason about the scaling w.r.t. input parameter |𝑉𝑉|, I compare the runtimes for graphs that
were generated have similar values for |𝐸𝐸|, regardless of the inputs 𝐾𝐾1 and 𝐾𝐾2, since |𝑉𝑉| + |𝐸𝐸| is what
determines the actual size of the graph input.

Note that this graph was obtained using 𝑃𝑃 = 4. The 𝑃𝑃-way edge sets algorithm’s runtime appears to
grow approximately logarithmically with |𝑉𝑉|. One likely explanation of decreasing slope as |𝑉𝑉| increase
is that for larger |𝑉𝑉|, each added vertex is unlikely to add much more work by introducing new edge
sets, and so the rate of increase of the runtime will slow as |𝑉𝑉| increases.

Note that this graph was obtained using 𝑃𝑃 = 4. While 𝑃𝑃-way edge sets algorithm’s runtime appears to
follow an upward trend as |𝑉𝑉| increases, I am unable to propose any possible mathematical relationship

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10000 20000 30000 40000 50000 60000

Ru
nt

im
e

(s
ec

on
ds

)

|V|

P-Way Edge Sets Runtime w.r.t. |V|

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000 12000

Ru
nt

im
e

(s
ec

on
ds

)

|V|

P-Way Edge Sets and Local Propagation
Runtime w.r.t |V|

Cooper Stevens Term Project Report EECS 587 Parallel Computing

due to the high variance. This high variance is likely due to the occasional processor getting “stuck” in
the local propagation phase.

Note that this graph was obtained using 𝑃𝑃 = 36. Vanilla edge sets algorithm’s runtime also appears to
grow linearly with |𝑉𝑉| with the exception of the outlier at |𝑉𝑉| = 50000. It makes sense for the runtime
to increase linearly with |𝑉𝑉| because each add vertex is likely to add a new edge set to the scenario,
adding a constant amount of new work to the problem. The outlier at |𝑉𝑉| = 50000 is likely a lucky
occurrence wherein the partition and sample for this particular arrangement of edges was particularly
good.

We can also examine how the runtimes are affected as a function of |𝑉𝑉| in the case when 𝑃𝑃 = 1:

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10000 20000 30000 40000 50000 60000

Ru
nt

im
e

(s
ec

on
ds

)

|V|

Vanilla Edge Sets Runtime w.r.t. |V|

Cooper Stevens Term Project Report EECS 587 Parallel Computing

We can see that all of the runtimes grow approximately linearly with |𝑉𝑉| (which makes sense because
everything has to be processed serially since 𝑃𝑃 = 1), but the 𝑃𝑃-way edge sets and Vanilla edge sets
algorithms exhibit a high variance for low |𝑉𝑉|. In fact, they all exhibit the same variances (i.e. both
quickly decrease then quickly increase, then quickly decrease again) which leads us to the conclude that
this variance is likely a result of the hardnesses of the associated problems that were solved to obtain
these data points (i.e. the problem with |V|=3000 seems to have been particularly easy).

After examining the scalability w.r.t. |𝑉𝑉|, we now move to examine the same w.r.t. |𝐸𝐸| (using 𝑃𝑃 = 16):

Here, the runtime 𝑃𝑃-way edge sets runtime exhibits a strange behavior with no apparent trend. Perhaps
this is indicative of the associated hardnesses of the problem that corresponds to each data point.

0

2

4

6

8

10

0 10000 20000 30000 40000 50000 60000

Ru
nt

im
e

(s
ec

on
ds

)

|V|

Solution Runtimes w.r.t. |V| with P=1

Serial Time

P-Way Edge Sets and Local Propagation

P-Way Edge Sets

Vanilla Edge Sets

0

20

40

60

80

100

120

0 20000000 40000000 60000000 80000000

Ru
nt

im
e

(s
ec

on
ds

)

|E|

P-Way Edge Sets Runtime w.r.t. |E|

Cooper Stevens Term Project Report EECS 587 Parallel Computing

As can be seen above, the 𝑃𝑃-way edge sets and local propagation algorithm exhibits the exact opposite
behavior of the 𝑃𝑃-way edge sets (without local propagation) algorithm. This is very revealing about a
relationship between the two approaches: for any graph for which the local propagation approach will
do well, a strictly 𝑃𝑃-way edge sets approach is likely to do poorly, and vice versa! What this means is
that these two approaches are complementary in some sense, each taking advantage of opposite
properties about a given graph so that when one does well, the other may suffer. Exactly what these
opposite properties could be is an excellent topic for future work.

Notice the logarithmic Runtime scale in the above graphic. The right-most data points on this line
resulted from algorithms that timed out due to the 5-minute time limit. Using the 3 left-most data
points, we can see that the logarithm of the runtime tends to grow linearly with |𝐸𝐸| (i.e. runtime grows

0

50

100

150

200

250

300

350

0 20000000 40000000 60000000 80000000

Ru
nt

im
e

(s
ec

on
ds

)

|E|

P-Way Edge Sets and Local Propagation
Runtime w.r.t. |E|

0.5

1

2

4

8

16

32

64

128

256

512

0 20000000 40000000 60000000 80000000

Ru
nt

im
e

(s
ec

on
ds

)

|E|

Vanilla Edge Sets Runtime w.r.t. |E|

Cooper Stevens Term Project Report EECS 587 Parallel Computing

exponentially in |𝐸𝐸|). This makes sense because every added edge is likely to make a new edge set which
can add 𝑂𝑂(𝑃𝑃) work (because this new edge set has to communicate with up to 𝑃𝑃 − 1 other processors),
and each receiving vertex from this edge set has to process an additional update in each iteration. This
additional update in turn is likely to instigate an update for their neighbors, then to their neighbors, and
so on a which can take 𝑂𝑂(|𝐸𝐸|) time propagate to all eventual receivers. This exponential growth in
runtime causes the program to time out for relatively small |𝐸𝐸|.

As expected, the serial algorithms’ runtime grown very linearly with |𝐸𝐸| which makes sense because
each new edge instigates only one additional message to be sent from the out-side of the new edge,
after which the algorithm can process as normal.

Finally, I example the trend in runtime w.r.t. the number of processors 𝑃𝑃. These data points were all
collected using a graph with parameters |𝑉𝑉| = 3000,𝐾𝐾1 = 6,𝐾𝐾2 = 12, resulting in |𝐸𝐸| = 178296. This
relatively small graph was selected so as to make termination very likely for every algorithm, and
because, after examining the data, the corresponding trends were very apparent. I tried to collect more
data points using other, bigger graphs, but most of the jobs timed out, and so no trend could be
inferred.

The fastest serial algorithm I could make for this problem solved this instance in 0.00327454 seconds. I
display the resulting graphs of Speedup for analysis:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20000000 40000000 60000000 80000000

Ru
nt

im
e

(s
ec

on
ds

)

|E|

Serial Runtime w.r.t. |E|

Cooper Stevens Term Project Report EECS 587 Parallel Computing

Notice the logarithmic 𝑃𝑃 scale. Here, 𝑃𝑃 = 1 appears to be an outlier. Notably, 𝑃𝑃 = 1 essentially
corresponds to the fast serial algorithm which explains why this datapoint appears to be irregularly fast.
As for 𝑃𝑃 > 1, the speedup appears to be linear with the logarithm of 𝑃𝑃 (that is to say, the speedup
grows logarithmically with 𝑃𝑃). This makes sense because each additional processor relieves the vertex-
load of the others by some factor (assuming this processor takes on its fair share of vertices) by relieving
them of the duty of updating those taken vertices, which is a disproportionally larger amount of work.

We see similar trends for each of the other algorithms as well:

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

1 10 100

Sp
ee

du
p

P

Speedup of P-Way Edge Sets with
Local Propagation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35 40

Ru
nt

im
e

(s
ec

on
ds

)

P

Speedup of P-Way Edge Sets

Cooper Stevens Term Project Report EECS 587 Parallel Computing

Conclusion

To conclude, after much effort and experimentation, while we were unable to make any parallel
algorithm that scales nicely, nor achieve any speedup of greater than 1 (for 𝑃𝑃 ≤ 36, as enforced by the
hardware), we are left with good insight into how some of these graph algorithms interact and respond
to varying social graph inputs.

On a happier note, we are left with a very fast serial algorithm for solving this problem that beats out (by
a long shot) any parallel algorithm I could come up with. I have been unable to find evidence of this
algorithm anywhere online, so perhaps this fast serial algorithm is my main contribution to the problem
of computing a path-count function from a set of source vertices in a DAG.

Future work on this topic might include investigating the role of structures in the graph in determining
what can make a parallel algorithm get “stuck” as we have seen, and also what graph properties
determine which parallel approach would work best. It also might prove fruitful to run these algorithms
on 𝑃𝑃 > 36 processors to see when and where the speedup levels off (and if it can ever achieve a
speedup of greater than 1).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 5 10 15 20 25 30 35 40

Ru
nt

im
e

(s
ec

on
ds

)

P

Speedup of Vanilla Edge Sets

